上海黄浦江"君子兰"号游轮上,游客用手机实时直播4K高清 江景;内蒙古伊敏煤矿里,超百辆无人驾驶卡车24小时不间断作 业;抗震救灾现场,无人机实时回传全景图像……这些"新图景"的 背后,都有正加速落地的5G-A技术的支撑

5G-A技术(5G-Advanced)在5G技术基础上,具有更高速

率、更低延迟、更高网络可靠性,是支撑产业数字化、智能化升级 的关键通信技术。从定位上看,5G-A是5G和6G之间的过渡 桥梁,因而也被称作"5.5G"

当前,"5.5G"正以10倍于5G的速率、毫秒级的时延、接近 100%的网络可靠性重塑人类与数字世界的连接方式。

### 5G-A 技术加速落地——

# "万物互联"迈向"万物智联"

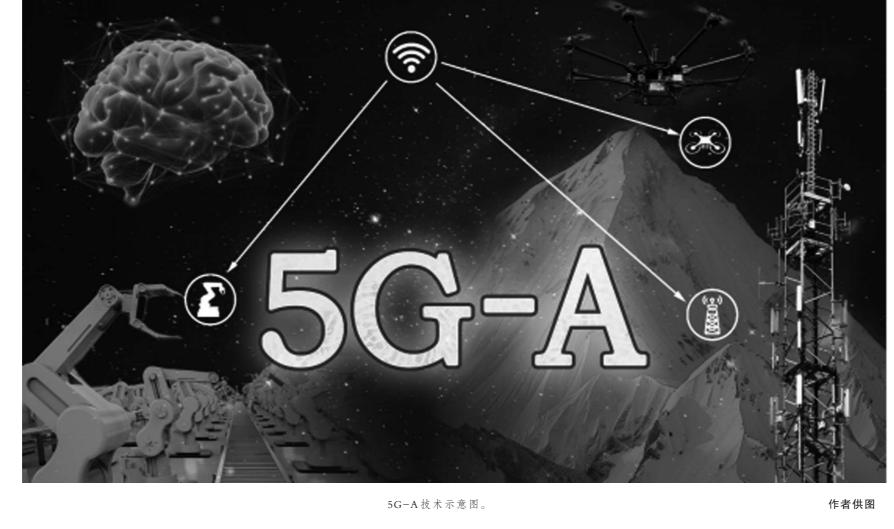
■涂一可 宋可旸 李润琪

#### 从5G到6G的"过渡桥梁"

或许有人会疑惑,为何在5G之后 不是直接迈入6G时代,而是出现了带 有小数的5.5G? 一般而言,移动通信技 术的迭代周期约为10年,但技术的飞速 发展使得每一代之间的技术差距日益 显著。因此,在这10年之间,往往会出 现一种介于两代之间的过渡代。

此外,虽然5G能够满足大部分日 常生活使用需要,但在无人驾驶、远程 手术、工业自动化等对时延和带宽要求 较高的新领域,则显得力不从心。因 此,5G-A应运而生。

5G-A的诞生是全球产业链协同创 新的结果,该技术在5G基础上进一步 提升性能,将多个6G技术提前导入,为 6G发展奠定技术和产业基础。其核心 特征体现在以下三大维度。


-更快的速度。借助多载波聚 合和上行发射切换等技术,相较5G, 5G-A的上行和下行速率约提升10 倍。以中国移动在杭州的5G-A载波 聚合示范区为例,该示范区通过整合多 个频段,下行速率突破每秒4G,下载一 部高清电影仅需不到10秒,为裸眼3D 技术乃至未来的全息通信奠定了算力 基础;此外,浙江在目前已有的载波聚 合技术5G-A网络基础上,在嘉兴南湖 成功完成技术验证,实现下行峰值速率 超过每秒 6.57G, 创造了全球 5G-A网 络手机用户下行速率的新纪录。

·更低的延迟。通过运用 AI 智 能调度,端到端跨层协同等新兴技术, 5G-A将时延进一步降低至毫秒级下 限,相较普通商用5G,网络可靠性从 "99.99%"提升到"99.999%"。目前,该技 术正从实验室走向现实应用:中国联通 携手华为,将5G-A技术深度融入工业 生产,达到时延4毫秒、稳定性接近 100%的性能指标,远超普通5G约20毫 秒的延迟水平,足以满足高精尖制造业 中机器人微米级协同等苛刻需求;中国 联通还在上海运用5G-A,成功实现全 时全域单向端到端时延20毫秒技术指 标,在嘉定、杨浦等多个区域率先建成国 内最大的5G-A"双20"车联网示范区。

——更大的连接规模。5G-A的快 速发展推动着轻量化5G、通感一体等 技术的迅速成熟,有效突破了传统网络 在复杂场景下连接容量与稳定性的瓶 颈。在北京工人体育场,新搭建的5G-A高低频立体组网,成功实现3028名用 户同时连接仍保持网络稳定,较传统 力深度融合,为大范围无人驾驶、无人 机航道实时规划等提供服务,为智慧城 市中接入海量传感器、实现万物智联打 开了新的空间。

### 与人工智能"深度耦合"

以"预见未来·从5G-A到6G"为主



题的2025年GTI国际产业大会上,中国 移动公司提出,随着科技革命和产业变 革深入,5G-A与人工智能等技术的融 合发展,正在提高通信能力,开启万物 智联新时代。

5G-A的大上行体验、低时延特性 以及全场景物联能力,为移动人工智 能时代的实时交互、多模态处理和广 泛连接提供了更坚实的保障。当前, 世界各国正在加速部署5G-A技术落 地,助力推动各行业向智能化转型:阿 联酋电信服务商 e&发布 5G-A 白皮 书,推出5G移动边缘、5G园区、车载 5G网络等产品;沙特STC集团与沙特 港务局合作开展智能港口,旨在借助 5G-A网络的增强能力,实现港口运营

在国内,5G-A与人工智能的结 合,正带给我们全新的体验。中国移动 安徽分公司为无为电缆厂定制"5G+ AI"质检系统,借助5G-A毫秒级的超 低时延,让AI推理结果能实时反馈至 5G单区域连接能力提升近10倍;不仅 牵引设备,精准识别气泡、凹陷等8类 如此,通感一体技术可将通信和感知能 缺陷,实现"发现即调整"的闭环控制。 中国联通在上海推出"智家通通"家庭 机器人,结合5G-A高速传输和人工智 能技术,能够精准识别用户语音指令; 新型AI摄像头结合5G-A网络与AI算 法,具备全新功能,当识别到婴儿啼哭 时,不仅会实时推送预警至家长手机, 还能通过 Wi-Fi 信号检测摄像头盲区 的异常运动,自动控制镜头并弹出实时

此外,对于正进入大规模部署期的

5G-A而言,人工智能技术的深度应用, 正是其降低功耗、节能减排的"关键一 招"。华为公司开发的"小区毫秒级快 速关断与唤醒"技术,引入智能业务预 测算法,提高针对每个小区、不同时间 点的预测准确度,从而精细化制定相应 节能策略,真正做到了"一站一策、一时 一策",实现5G-A高性能与低功耗之 间的平衡。

### 未来场景的"孵化摇篮"

得益于5G-A在速率、时延等关键 性能上的提升,许多曾经看上去不可 能实现的"未来场景",正逐步孵化落 地,成为你我生活中的日常体验。相 较于5G,5G-A将应用范围进一步延 伸至低空经济、安全保障、具身智能等 新兴领域,体现出其在不同维度上的

低空经济领域,5G-A依托其通感一体、 大规模天线和智能频谱管理等关键技 术,重点缓解了信号干扰、频率杂乱与 信号"死角"等长期困扰无人机低空区 域信号传输的"老大难"问题,显著提升 了通信质量与飞行稳定性。在深圳龙 岗,首条政企文件无人机航线的成功首 飞,正是这些技术的集中体现。借助 5G-A技术,无人机实现了全程自主飞 行、实时避障与厘米级精准定位,为空 中高速传递政企重要文件提供了可靠

保障,为低空经济安全高效发展提供了 关键支撑。

一体感知,全域安全精准预警。在 安全保障领域,5G-A技术的应用正逐 步扩展至更多关键场景。该技术使通 信基站兼具信号传输与环境感知能力, 从而实现对周边区域的持续监测与数 据分析。以上海黄浦江航道为例,部署 于沿岸的5G-A通感一体化基站,依托 集成的高精度毫米波雷达,能够对江面 船舶进行24小时不间断扫描,实时获取 位置、航速与航向等信息。当船舶经过 重点水域时,系统可自动发出预警 提示,有效提升航道运行的安全管控

远程操控,具身智能瞬时响应。在具 身智能领域,5G-A技术为实体机器人 的规模化应用提供了重要支撑。具身 智能体需依靠高带宽、低时延的通信 网络,完成海量环境数据的实时回传 与控制指令的瞬时下发,而5G-A正好 满足其对传输性能的严苛要求。在 低空通信,信号顽疾迎刃而解。在 2025年世界机器人大会上,乐聚"夸 父"人形机器人基于5G-A网络,完成 了从北京到上海跨越1200公里的超远 距实时户外配送任务。即使在快速奔 跑过程中,系统仍能维持毫秒级通信 时延与稳定的自主导航能力,展现了 5G-A在远场控制与实时交互中的关

作为5G和6G之间的过渡桥梁, 5G-A承担着将通感一体、无源物联等 6G关键技术提前导入现有网络进行验 证的使命。虽然5G-A相较于5G已经

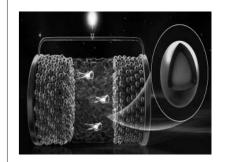
有了长足进步,但距离理想中的6G,还 存在着下列几处较大差距:

首先,5G-A的峰值速率虽已达10 千兆比特/秒,但距离6G,仍有接近百 倍的差距。

其次,5G-A的智能化程度较6G尚 有不足。理想中的6G会将AI融入网络 的深层核心,使未来的网络本身成为一 个巨大的分布式智能体,能自主优化、 管理故障,统筹分配网络资源。

最后,5G-A的覆盖仍以地面为主, 而 6G 的蓝图,将建设一个集成卫星、无 人机、地面基站和海洋通信于一体的立 体网络,真正实现全球无缝覆盖。

但这并不影响5G-A仍是当下性 能领先的通信技术。总体来看,5G-A 不仅在多个关键场景中实现了技术突 破与深度融合,更以通感一体、无源物 联等创新架构,为未来实现6G搭建了 桥梁。尽管短期内仍面临旧终端兼容、 使用场景限定、复杂网络协调等挑战, 但这些挑战正激励着相关产业不断突 破创新。随着AI驱动、动态资源分配等 技术的成熟,5G-A将以其更智能、更高 效、更绿色的特质,对社会发展产生更 深远的影响。


从为低空经济导航,到守护航道安 全,5G-A技术如同一条更宽广、更智能 的"信息高速公路",不断将孤立的智能 节点连接成网,推动全社会从"万物互 联"迈向"万物智联"。或许有一天,你 会突然发现,由5G-A所带来的智能体 验无处不在,支撑起更加高效、安全与 便捷的"数字新时代"。

### 科 技 云

科技连着你我他

■本期观察:程春蕾 雷 骁 齐旭聪

### 氢负离子原型电池



近日,中国科学院大连化学物理 负离子的高效可逆传导,突破了传统 氢能电池能量密度与安全性方面的技 术瓶颈,相关技术成果已在《自然》杂 志发表。

氢负离子电子具有密度高、反应 性强等特性,却因在常温下难以稳定 存在,发展受到制约。利用稳定性高 的氢化钡薄层包裹三氢化铈构建的新 型"核壳结构",可实现氢负离子的稳 定迁移。

研发人员称,该电池采用的全固 态结构,还使该电池的安全性极大提 高。未来,此类电池将在大规模储能、 储氢、移动电源、特种电源等领域发挥 重要作用。

### 三硫化锑太阳电池



近日,中国科学院合肥物质研究 院制备出一款三硫化锑太阳电池,解 决了传统太阳电池成本高、柔性差、转 换效率低等问题,相关研究成果在已 《先进能源材料》杂志发表。

硫化锑毒性低、稳定性好、吸收系 数高,是一种极具潜力的光吸收材 料。但以往传统工艺在制备过程中载 流子损耗较高,影响电池的光电转换 效率。该团队利用异质结构,对技术 进行优化,确保了电池在多种光线条 件测试下,仍能保持较高的光电转换 效率。数据显示,在普通光条件下,三

未来,该电池有望在太阳能发电 领域、室内能源收集与物联网应用领 域发挥重要作用。

### 可循环弯折柔性电池



近日,中国科学院金属研究所联 合华中科技大学研究团队在固态锂电 池领域取得重大突破,研制出可弯折 20000次的柔性电池,有效解决了传 统固态电池阻抗大、离子传输效率低 的问题,相关研究成果已在《先进材 料》上发表。

传统固态电池内部电极与电解 质常因界面接触不良,致使传输效率 大大降低。研究团队利用聚合物分 子的设计灵活性,引入具有离子传导 功能和具备电化学活性的材料,实现 了离子的高效传输和能量储存的智 能调控。值得一提的是,该电池可在 仅为3毫米的曲率半径下,循环弯折 20000次后,容量仍达98.7%。

相较于以往柔性电池制造技术, 该型电池在制造上采用印刷、喷涂等 柔性工艺,能够实现定制化生产。这 意味着,未来该电池可在智能穿戴设 备、软体机器人和植入式医疗设备等 方面发挥独特作用,为传统电池难以 胜任的场景应用提供新的动力解决

## 超固体:会流动的固体长啥样

水是液体、石头是固体、空气是气 体……在人们的常识里,物质都有非此 即彼的明确属性。那么,是否存在这样 一种物质材料,它既能像水晶等固体一 样拥有规则稳固的晶体结构,又同时像 液体一样能够毫无阻力地流动呢?

这听起来似乎是天方夜谭,但这种 物质的确存在,这就是"超固体"——一 种在极端条件下出现的、挑战我们日常 直觉的物态。

根据今年3月的《自然》杂志报道, 意大利国家研究委员会研究人员首次 利用光创造出可以像液体一样流动的 超固体,为科学家探索物质的不寻常量 子态开辟了新途径。

要理解这个看似矛盾的物质,我们 首先需要了解物质形态的两个概念:固 体和超流体。

普通固体中的原子排列形状为规

位置,只能围绕平衡点做微小振动,因 此固体能保持固定形状;超流体则完全 相反,它是一种零黏滞性的流体,能够 无阻力地通过极细的缝隙,甚至能"违 背重力"沿着容器壁向上爬升。

超固体,则同时具备这两种看似互 斥的特性。

早在1957年,美国物理学家尤金・ 格罗斯在研究具有相互作用的微观粒 子时,就在理论上预言了这种特殊物质 的存在。不过,直到近十几年,科学家 们才在实验中真正创造出并确认了这 种奇特物态的存在。

超固体的核心奥秘源于量子力 学。在极低温环境下,某些量子效应开 则的点阵,每个原子都被"锁定"在特定 始主导微观世界的行为。当我们将一

团原子气体冷却到接近绝对零度时,它 们会经历一种称为"玻色一爱因斯坦凝 聚"的相变。此时,所有原子会"步调一 致"地行动,表现得像一个巨大的"超级 原子"。

在这个量子世界里,奇迹发生了: 这些原子自发地排列成规则的点阵结 构,如同晶体一般;但同时,它们又保持 着超流动性,能够无阻力地流动。换句 话说,超固体中的每个原子既被"锁定" 在晶格的特定位置上,又能够"绕墙而 过",在整个材料中自由移动。

在超固体中,原子不再是被限制在 固定位置的粒子,而是扩展到整个系统 中的波。这些波相互干涉,形成了稳定 的周期性图案(即晶体结构),但同时又 允许物质以相干的方式流动。

实现超固体绝非易事。科学家们 需要创造极其苛刻的实验条件:首先 将原子气体冷却到仅比绝对零度高百 万分之一度,然后利用特殊的光场或 磁场操纵这些原子。2017年,国际上 两个独立研究团队分别通过不同方 法,首次在实验中明确观测到了超固 体态。一个团队通过使用极冷的光学 镊子中的稀土原子观测到超固体态, 另一个则利用"玻色一爱因斯坦"凝聚 体与特殊光场的相互作用实现观测。

对超固体的研究不仅满足了人类 探索自然基本规律的好奇心,未来还可 能带来革命性的技术应用。例如,超固 体可能成为制造极高精度传感器的关

键材料,用于测量微小的旋转、加速度 或引力变化;在量子计算领域,超固体 的特殊性质可为制造更稳定、更高效的 量子比特提供新思路……

随着在超冷原子、超流体氦等系 统中对超固体的研究不断深入,科学 家们正逐步揭开这种神秘量子物态的

超固体的发现提醒我们,自然界远 比我们想象得更为奇妙。在我们的日 常经验中,固体和流体是截然不同的物 态,但在量子世界里,它们可以神奇地 共存。这种超越常识的物态的发现,正 是基础科学研究不断拓展人类认知边 界的生动例证,为未来技术发展开辟无