今后6年将建成6艘

责任编辑/王 蕊

土耳其首艘先进潜艇服役

据土耳其国防部消 息,土耳其海军雷斯级 AIP(不依赖空气推进)潜 艇首艇于8月底在阿克萨 兹海军基地举行人役仪 式。同一天,该级潜艇的 二号艇与三号艇分别举行 海试和舾装仪式。雷斯级 潜艇的引进与发展,被视 作土耳其加快潜艇国产化 发展的标志。到2029年,6 艘雷斯级潜艇计划全部建 成并投入使用。

沿用德制潜艇主要技术

雷斯级潜艇原型艇为德国蒂森克 虏伯海洋系统公司的出口型214潜艇, 最初被称为214TN型(TN是土耳其海 军英文首字母缩写),之后被命名为雷 斯级,以纪念16世纪奥斯曼帝国著名海 军上将皮里·雷斯。该型艇采用AIP推 进系统,并根据土耳其海军需求,在整 合土耳其国产武器装备基础上,进行设 计与研制。根据合同,雷斯级潜艇由德 国授权在土耳其本土建造,前两艘艇的 主要部件和材料由德国蒂森克虏伯海 洋系统公司提供。

艇体技术成熟。雷斯级潜艇具有 结构紧凑、排水量适中、隐身性能良好、 武器装备承载量大等优点,能够满足水 下多种作战需求。公开数据显示,雷斯 级潜艇长约69米、壳体直径约6米,水下 排水量2100吨,最大潜深400米,载员 40人。艇体采用耐压单壳体加局部双 壳设计,确保在舱室进水等极限情况下

动力系统先进。雷斯级潜艇采用 新型燃料电池和 AIP 推进技术,装备 2 组总输出功率240千瓦的燃料电池系 统和2块高容量电池,通过2台西门子 电机和2台MTU柴油发动机提供动 力。该级艇具备较高的航速、较强的 续航力和较大范围部署能力,水上最

入役仪式上的土耳其雷斯级AIP潜艇首艇。

大航速15节,水下最大航速24节;2至 6节航速下,可在水下连续航行3周,最 大海上自持力41天。

作战效能均衡。雷斯级潜艇上配 备8具533毫米重型鱼雷发射管,可装 填反舰导弹、重型鱼雷等,例如美国 UGM-84"鱼叉"反舰导弹、Mk48 Mod 6AT 重型鱼雷,德国 DM2A4 重型 鱼雷等,同时还能兼容土耳其国产"阿 卡亚"重型鱼雷、"阿特玛卡"反舰巡航 导弹和"旅行者"远程巡航导弹。其 中,"阿卡亚"重型鱼雷具有声呐引导、 声学对抗、尾流寻的、自主控制或遥控 功能,能够打击潜艇和各类水面目 标。"旅行者"远程巡航导弹有"土耳其 战斧"之称,具备从水下对陆地纵深目 标进行远程打击能力。得益于这些武 器装备,雷斯级潜艇能够执行从沿海 水域作战,到远洋战备巡逻等多样化 任务,包括遂行反舰反潜作战,执行情 报、侦察和监视任务以及水下渗透等

特种行动。

推动本土潜艇技术发展

引进雷斯级潜艇是土耳其推动潜 艇国产化发展的关键一步。土耳其在 先前引进的12艘209型常规动力潜艇基 础上,通过组装、建造雷斯级潜艇,进一 步掌握潜艇制造技术,积累相关经验, 培养技术人才,提升土耳其国防工业自 主设计和建造能力。

一方面,土耳其造船行业通过参与 雷斯级潜艇设计、组装和建造,进一步 消化吸收德制潜艇的先进技术,拓展潜 艇设备制造领域,实现对电子、通信、水 中武器、声呐和 AIP 等系统的自主研发, 推动建立较为完整的工业制造体系。 另一方面,目前土耳其自行设计建造的 "国家潜艇"项目已进入设计阶段,计划 于2030年后开工建造。除既定参与该 项目建浩的企业外,十耳其国内众多国 防企业作为分包商参与该项目。这些 企业通过参与雷斯级潜艇相关系统研

发,在潜艇导航与数据管理、鱼雷对抗 系统等方面取得突破性发展,极大地增 强了土耳其本土造舰、电子、武器系统 整合能力,确保土耳其国产潜艇项目顺 利发展。

提升海上作战实力

根据计划,雷斯级潜艇将于2029年 全部建成并投入服役。届时,6艘AIP 潜艇将大大提高土耳其海军的水下探 测和攻防能力,进一步拓展其海上战略

雷斯级潜艇项目的顺利发展,将为土 耳其打造其他舰艇项目奠定技术基础,也 为土耳其批量建造新型近海护卫舰,打 造新一代登陆舰、猎/扫雷舰等发挥积极 的推动作用。未来,该级潜艇服役后,将 进一步加强土耳其对周边海域的监视和 控制能力,提高其在地中海方向和黑海 方向上的影响力和地区安全事务中的话 语权。

前沿技术

智能绷带改变救治方式

据外媒报道,新一代智能绷带即 将面世,它们可以让医生远程监测伤 口情况,减少疤痕,加速伤口愈合,已 经成为可穿戴技术的热点之一。

报道称,这种高科技智能绷带目 前已经出现。其内置微型电子设备, 可以检测伤口的愈合情况,并将相关 信息传输给医生。一些绷带还能让医 生进行远程换药等操作。

近年来,得益于微电子技术和柔 性材料技术的进步,智能绷带技术得 以迅速发展,成为蓬勃发展的可穿戴 技术产业的一部分。2019年,美国国 防部高级研究计划局专门为开发有助 于伤口愈合的生物电子项目拨款,在

一定程度上推动了智能绷带技术的发 展。目前,类似研究在多个国家和地 区已经进入测试阶段。

动力滑翔伞受美军青睐

据外媒报道,美陆军正考虑使用 动力滑翔伞在战区前沿运送士兵。 根据美陆军一份征集意见显示,美陆 军希望获得一种动力滑翔伞系统,为 部队人员提供空中机动能力。这种 动力滑翔伞"将支持多种任务,包括 侦察、监视、部队调动、渗透和撤 离"。美陆军希望其飞行距离可达 300千米,承重量达180千克,最大飞 行高度 6000 米。

动力滑翔伞可能是现存最古老的 动力飞行器,美陆军一直希望在战场上 加以使用,但未成功。2023年10月,哈 马斯武装分子使用动力滑翔伞越界打 击以色列境内的军事和民用目标,相关 视频出现在社交媒体上,引起外界讨 论。今年5月,至少有7支驾驶动力滑 翔伞的美军突击队亮相美军年度"特种 作战部队周能力演示会"

分析认为,动力滑翔伞相对安全 且易于使用,新手在短时间内就能 完成培训。由于承载力较强,一名 体重在80千克左右的士兵利用20千 克重的滑翔伞,可以运送多达70千 克重的武器装备。不过,动力滑翔 伞的飞行速度较慢、噪音较大,加上 低空飞行,很容易遭到敌方防空系

俄制氢能源无人机亮相

据俄罗斯媒体报道,莫斯科工程 物理学院研究人员开发出一种氢能源 无人机。这种无人机在飞行过程机身 不会震动,从而可以安装一些灵敏的 探测设备。

据报道,这种无人机主要用于石 油、天然气管道和输电线路的巡逻监 测。该无人机在飞行中不会排放热 气,因而难以追踪其飞行路线。而采 用普通燃料的无人机,其飞行痕迹在 空气中可留存6小时以上。

为配合这种氢能源无人机的使 用,研究人员还研制了专门的集装 箱加氢站,这种加氢站可在5分钟 内将无人机携带的氢气瓶充满。

据报道,这种氢能源无人机可在 空中停留2小时以上,配备光学侦察设 备后,可执行相应任务。

(子渊整理)

■王笑梦

上图,一辆平板拖车上搭载了一架 拆解后的F-16A"战隼"战斗机,即将前 往美国亚利桑那州卢克空军基地。

出发前,承包商全球飞机回收服务 公司对这架 F-16A"战隼"战斗机进行了 拆解——将可能导致车辆超宽的机翼拆 下,发动机和尾喷管等主要部件取下,分 别固定在拖车前后的空隙处,剩余的主 体机身被固定在拖车中央,最后在车尾 挂上"超大负载"的黄色警示条幅。一切 就绪后,拖车在护送下上路了。运送过 程中,车队尽量选择没有桥梁涵洞的路 段行驶,避免出现限高等情况。

抵达目的地后,这架F-16A"战隼" 战斗机被重新组装并涂上红色尾翼,陈 列在该基地第944战斗机联队办公楼 前,以纪念该战斗机联队的前身

"塔斯克基"航空队。"塔斯克基"是美国 空军历史上第一支黑人航空队。这支 航空队在二战期间共击落和摧毁敌机 262架,击伤148架,击毁车皮、汽车近千 辆(节),重创一艘意大利驱逐舰。该航 空队以红色尾翼的标志性涂装,令外界 印象深刻。

这架 F-16A"战隼"战斗机的来历 也非常有意思。在送往卢克基地前,该 机曾作为地面训练飞机使用,机尾上印 有"ST AF79-327"字样。其中, "AF79-327"是该机的注册号, "ST"是 美空军部队识别码。部队识别码一般 由基地名、基地名加所在州名的首字母 组成,通常会随着战斗机的服役经历不 断变化,而注册号不变。在移交第944 战斗机联队后,这架F-16A"战隼"战斗

机的机尾上的注册号和识别码被改为 "LR302 FS86-0291"。LR代表亚利桑 那州卢克空军基地,而"FS86-0291"是 该基地第944战斗机联队一架F-16C 战斗机的注册号。原来,该中队在没有 退役战斗机可用于制作陈列品的情况 下,从别的基地"借来"这架F-16A"战 隼"战斗机,并为其换上该中队战斗机 的注册号

如今,这架被"改了身份"的 F-16A "战隼"战斗机,已经成为卢克空军基地 的标志,在那里默默讲述"不属于自己的

图文兵戈

"轻型隐身战斗机"概念凸显纠结

■赵友谊

近日,美国空军参谋长戴维·奥尔文在伦敦举行的全球航空航天首脑会议上,公布了一款 "轻型隐身战斗机"概念图。结合美空军不久前刚刚宣布暂停"下一代空中优势"战斗机(NGAD) 项目的消息,分析认为美空军在战斗机发展方面的种种举动,凸显出其在机型定位与现实需求、 使用成本与经费预算、技术指标与空战模式之间的矛盾。

美空军历来倚仗先进战斗机掌握 制空权,在装备F-22、F-35等五代机 后,又宣布开发"下一代空中优势"战 斗机(NGAD)项目,并将其列为赢得 "大国竞争"、打赢"高端战争"的优先 事项。然而,面对近年来几场地区冲 突外溢引发的全球局势动荡,美空军 发现,其需要更多五代机和F-16这样 的轻型战斗机在欧洲、中东地区执行 任务。美空军的现实需求与装备发 展之间的错位,是其战略重心失调的

屡创新高。F-22战斗机的采购单价达 到1.35亿美元,"下一代空中优势"战斗 机(NGAD)项目暂停前,单机成本预计 接近3亿美元,占用了大量的研发经 费。另外,F-35战斗机每小时飞行成 本接近3.6万美元,迫使美空军放弃该 机替代F-16战斗机的计划。在这种情 况下,开发一种价格合理的轻型隐身战 斗机接替F-16战斗机,成为较为稳妥 的选择。

技术指标与空战模式不相适

从五代机到六代机,美战斗机成本 应。美军方对"下一代空中优势"战 斗机(NGAD)项目寄予厚望,对该 机的隐身性能、渗透能力和作战半 径等提出明确要求。然而,在智能 化技术以及无人作战、协同作战快 速发展的当下,先进远程武器和传 感器的应用削弱了对战斗机高速、 高机动性的要求,体系对抗成为影 响未来空战结果的关键因素。提出 "轻型隐身战斗机"概念,反映了美 空军在"下一代空中优势"战斗机项 目上的反思和调整。

按照美空军的设想,"轻型隐身战 斗机"不只是为了便宜、实用,其本身 可能是美空军"下一代空中优势"战斗 机(NGAD)项目的一部分。在硬件设 备上,"轻型隐身战斗机"的总体设计 将达到4.5代战斗机水平,同时强调系 统兼容能力,外形"像缩小版的F-35战 斗机"。在使用定位上,该机将打破传 统的轻、重战斗机"高低搭配"的作战 模式,作为五代机的"协同作战飞机", 具备电子干扰、通信中继等功能,还能 携带导弹,成为杀伤链中的打击一 环。在整体效益上,该机成本相对较 低,确保能够大量生产,用于替换F-16 战斗机,完善美空军机队配置。此外, 该机还将采用通用软件缩小新老机型 的技术代差,完善美空军"下一代空中 优势"战斗机(NGAD)项目的体系作 战能力。

